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Generalized Bloch equations for a strongly driven tunneling system
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Using theRobertson projection operator formalisiwe derive generalized Bloch equations which describe
the dynamics of a biased two-level tunneling system strongly driven by an external field and weakly coupled
to a super-Ohmic heat bath. The generalized Bloch equations constitute a set of coupled nonlinear integro-
differential equations. With their help we investigate the influence of phonons on the phenomenon of dynami-
cal localization[S1063-651X97)05002-3

PACS numbgs): 05.30—d, 05.40+j, 32.80—t, 62.65:+k

[. INTRODUCTION by the coupling to a heat bath. Physical intuition seems to
suggest that in order for dynamical localization to occur, a
The last decade has witnessed detailed investigations efave packet initially localized in one well must have a well-
the problem of macroscopic quantum cohereft@]. The defined phase; only then can one expect that a mismatch
generic model is a two-level tunneling syst€ft.S) coupled  between the tunneling motion and the driving field may pre-
to a harmonic heat bath and an external driving field. Thevent a particle from escaping into the other well. Since
tunneling units may represent, e.g., small groups of atoms gshonons destroy this phase coherence—i.e., there is a finite
molecules in structurally disordered solids, such as in thgghase memory time,—dynamical localization should al-
study of low-temperature properties of glasg@k electrons  ways be softened through the coupling to a heat bath.
in semiconductor quantum wellg4] or in the electron- Recently Grifoniet al.[13] gave a systematic approach to
transfer dynamics in chemical reactidiag; or magnetic flux  the transient and steady-state dynamics of a driven dissipa-
guanta at Josephson junctions or superconducting quantutive TLS. They considered Ohmic and frequency-dependent
interference device€SQUIDS [6]. The basic mechanism by damping in the framework of the NIBA for the stochastic
which quantum coherence is destroyed is the coupling of théorce, but without any approximation for the driving force. In
guantum system to the dissipative environment. Various apRef. [14] they extended their approach beyond the NIBA.
proaches using second-order perturbation theory, variation®ittrich et al. [15] investigated numerically the effect of
polaron theory[7], mode-coupling theorie$8] or, most driving and dissipation on the coherent tunneling motion of a
popular, the noninteracting-blip approximatidiBA) [1,2]  symmetric bistable system for weak Ohmic damping. Dakh-
have been used to discuss the decoherence effect of the battmvskii [16,17] employed small-polaron theory to address
One key issue is whether by careful tuning of the drivingthe same issue in a two-state approximation within the
field the effect of dissipation may be reduced and quantunNIBA. He concluded for the case of a symmetric TLS with
coherence be restored on the macroscopic level. This idea stiper-Ohmic damping that, in contrast to intuition, the local-
controlling tunneling and relaxation has become especiallyzation transition remains stable against disturbance by the
popular since the discovery, by Grossmannngti, and co- bath as long as the driving frequency is larger than the re-
workers[9], of the effect ofcoherent destruction of tunnel- laxation energy(polaron-binding energyof the lattice. On
ing. In a numerical treatment of an isolated bistable quartichese grounds he predicted the existence of a slow mode
potential driven by a periodic force—but not coupled to aoscillation near the transitiofl6]. His conclusions essen-
heat bath—they found complete suppression of tunneling: atally rely on the fact that near the localization transition the
certain ratios of the field amplitude and the driving frequencyrate of phase loss—which is due to the bath—decreases
the two lowest Floquet eigenstatéguasienergigsof the  faster than the tunneling coherence.
driven system become degenerate, thereby preventing the So far most investigations have made use of the NIBA.
system from performing coherent oscillations between theret the NIBA breaks down at nonzero bias, weak dissipa-
left and right well. As a result, a particle initially localized in tion, and low temperatures. It is the latter regime, so far
one well will remain there forever. This so-calldgnamical poorly understood, which we shall discuss in this paper.
localization effect has also been described in a two-statéNVeak TLS-phonon coupling is the limit which is relevant
model [10-12, and has since been the subject of severafor, e.g., the description of tunneling centers in dielectric
further investigation§13—232. solids. We will work within the two-state picture and assume
Recent studies have focused on the question of to wha super-Ohmic spectral density for the phonons; and we will
extent the dynamical localization of a TLS will be affected treat the TLS-phonon coupling in Born approximati@3].
(There are in fact general arguments why under the above
assumptions it should always be justified to treat the dissipa-
*Present address: Max-Planck-Institiit Rhysik komplexer Sys- tion perturbativelyf1].) The external field, on the other hand,
teme, Bayreuther Stge 40, Haus 16, 01187 Dresden, Germany. Will be treated to any order. We are then able to derive non-
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linear and non-Markoviangeneralized Bloch equations
(GBE). These in turn permit us to discuss the influence of Prel(t)izz(t)_lexr{ - |a(t)Ga>, (2.4
weak dissipation on the localization transition for both the a
symmetric and the biased case, and for arbitrarily strongalled therelevant part of the statistical operatowith par-
driving and any temperature. In the high-temperature anétion function
high-frequency limit there are analytical solutions, which we
will compare with those obtained from the NIBA. L a

The paper is organized as follows. In Sec. Il we give a Z(): =t EXp( _g ! (t)Ga)
short introduction to the Robertson formalism and apply it to
driven TLS dynamics. In Sec. lll we derive the GBE. Theand the Lagrange parametef'(t)} adjusted such as to
linear response regime is discussed as a special case in S¥tgld the correct expectation valué€z.1) of the relevant ob-
IV. In Sec. V we address the influence of weak dissipatiorservables. The difference
on the dynamical localization transition, before we cléise

(2.5

Sec. V) with a brief summary. Pirr(1):=p(t) = pre((t) (2.6
is then theirrelevant partof the state.
Il. ROBERTSON FORMALISM Like all variants of the projection technique, the Robert-

We will derive a non-Markovian generalization of the SO0 formalism is based on a clever insertion of projection
. . 9 operators into the equation of motig2.2). Here the projec-
Bloch equations with the help of the so-called Robertson. . . i )
. : . ion operatorP(t) is chosen such that it projects arbitrary
formalism[24]. The Robertson formalism constitutes a par- S
vectors in Liouville space onto the subspace spanned by the

ticular variant of the well-known projection techniq(25], )
one that is tailored to describing the evolution of selecte nit operator anql by the relevant_ observakiies}, ano_l that
his projection is orthogonal with respect to tleme-

observables even far from equilibrium. dependentscalar product
When studying the dynamics of a macroscopic quantum P P
system, one is typically confronted with the problem of de- 1
termining the evolution of only a small set of selectégkl- (A;B): =f du t prei( V) “Alpre(t) BT, (2.7)
evant”) observables {G,}. Let the (generally time- 0

dependent Hamiltonian be denoted byH(t). Then the  Since this scalar product varies in time, the projection opera-

equation of motion for the expectation values tor, too, is time dependent; so is its complement
D= UGS @D ety DT PSR P s tnoun o e
reads Let 7(t',t) be the evolution operator defined by
9a()=i(L(1)Ga)) (2.2 %ﬂt',t)z —i Q)L HQU) Tt L), (2.8
Ylvalltr:] p(1) being the statistical operator aifiqt) the Liouvil- with initial condition 7(t,t)=1. As Q projects out the irrel-

evant component of an observable, this operator may be pic-
L(t):=A"H(t),*]. (2.3)  tured as describing the evolution of theelevantdegrees of
freedom of the system. The equation of motion for the ex-
Associated with the expectation valugg,(t)} is, at each pectation values of the relevant observables can then be cast
time t, a generalized canonical state into the form

. t ,
ga(t)=i(£(t)Ga>re|(t)+Jodt’g <Q(’[’)/3('[’)GC;’Z('[’,'[)Q(t)lj('[)Ga)(t )Ic(t')+i(T(O,t)Q(t),C(t)Ga)i,r(o), (2.9

which is known as thdRobertson equatiof24]. Here( ),y  tion values{g,(t)}. These coupled equations are nonlocal in
and( );, denote expectation values evaluated in the relevartime: future expectation values of the relevant observables
and irrelevant part of the state, respectively. A major simpli-are predicted not just on the basis of their present values, but
fication occurs if, as is often the case, the initial macrostat®n their entire history. In essence, the irrelevant degrees of
can be characterized completely by the expectation valueseedom have been eliminated, but this elimination must be
{{G,)(0)} of the relevant observables and hence has th@aid for by nonlinear and non-Markovian features of the pro-
generalized canonical forif2.4). In this case the initial state jected equation of motion; the complexity of the evolution
has no irrelevant component, which in turn implies that thehas been mapped onto nonlinearities and a nonlocal behavior
third (“residual force”) term vanishes. in time.

The Robertson equation embodies a closed system of non- We now determine the Robertson equation for a driven
linear coupled integro-differential equations for the expecta-TLS. The underlying microscopic dynamics of the TLS is
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determined by a time-dependent Hamiltonian form includes the common case of a particle initially held at
the site|L), p,(0)=1, and coupled to a bath in thermal
H(t)=Hg(t)+Hggt+Hg. (2.10  equilibrium,
Here the system Hamiltonian is given by p(0)x 7 exp{— B[H(0)+ 3hAgo ]} . (2.19
He(t)=— 2o-h(t), (2.1 Here, m = 3(1+ o,) denotes the projector on the state.

This initial condition has the generalized canonical form

whereh(t)=%(A,,0,— A—f(t)) includes the tunneling fre- (2.4) with Lagrange parameteis(0)=(0,0). Clearly, the
quencyA,, the biasA, and the time-dependent driving field fact that the initial state has the generalized canonical form
does not imply that the total system is in equilibrium; rather,
f(t)=2Qcoqw 1), (2.12 it means that the initial state can be completely characterized
by the expectation valudp,(0),Eg(0)} of the relevant ob-
with Rabi frequency() and driving frequencyw,_ . If we  servables. The Robertson equation then translates into the
denote the state of a particle localized in the (efjht) well generalized Bloch equations

by |[L) (|R)) then the Pauli matrixr,=|L){L|—|R){R| rep-
resents its coordinate, whike,=|L)(R|+|R){L| represents - 1z - - b ,
its tunneling motion. With this (lOle/elnti(LLfng' me%ns that  Pe(D=R"{POX[h(O=X(OT}— fodt EB Kap(tit')
the left well has a higher potential energy than the right well.

The bath HamiltoniarHg=3,% wyb|by, with bosonic cre- X[Ng(t") =hg(t')], (2.20
ation and annihilation operators satisfyifig ,b']= dij , de- ith K |

scribes the dynamics of an ensemble of harmonic oscillator\évIt memory kerne
(phonon$. Their spectral density is taken to be super-Ohmic,

2 Kaﬁa,t'):=§<Q<t'>£ss¢rﬁ;ﬂt',t)Qa)LSBan’)-
J(w)=522 c28(w—wj)=Uw’exp —wlw), ©=0 (2.21)
J

(2.13 The GBE are non-Markovian: our formalism allows for the
inclusion of arbitrarily large memory effects. Indeed, such

up to some cutofiw. . Finally, the system-bath coupling is non-Markovian effects will prove essential for the determi-
assumed to be bilinear in the tunneling and the phonon cyation of the correct relaxation rates.

ordinate,

Ill. DRIVEN DYNAMICS AT WEAK DISSIPATION

Hsg= 0,2, cj(bj+b))=:0e. (2.14
! For simplicity, we will from now on sefi=kg=1. In

order to evaluate the memory kernel we assume weak cou-

Relevant observables are pling between the TLS and the bath, and hence do lowest-

(G} —{o, ,(Hsgt+Hp)}, (2.15  (i.e., second-order perturbation theory iirsg (Born ap-
“ proximatior). To this order we can omit the complement
with expectation values projectorsQ, replace the evolution operat@rwith
{ga(t)}—={p.(t),Eg(t)} (2.16 Tt t) — Ug(t' H)oUs(t',t), 3.1
and associated Lagrange parameters where7, Us, Ug are the evolution operators associated with
QLO, Lg, and Lg, respectively, and evaluate the scalar
{13(t)} —{— B\ (1)/2,8}. (2.17) product(2.7) in the state
Here p,(t) denotes the time-dependent polarization of the P (D =pg@pd X(1)]:
TLS, andEg(t) the internal energy of the bath. We assume 1 1
the heat bath to be large en_ough so that its inverse tempera- ———exp— BHp)® —exp[%[.—%)f(t) o] (3.2
ture 8= 1/kgT does not vary in time. The relevant part of the Zp Zs

statistical operator reads ) .
rather than inp,¢(t). We thus obtain

prei(t) =2 texp{ — B[Hp+Hsg— 3X(1)- o]} Kap(t,t)=g(t—t")E 4(t,t"), (3.3
=Z"texp(— B{H(t) + 3[h(t) =\ (1)]- o}). with the bath relaxation function
(2.18
Iy . . I * \]((I)) !
Provided the(full) initial state p(0) can be written in this 9(t~ 1) =25(eil(t ’t)e>B:2fo do ———cogw(t—t")]
generalized canonical form, i.e., providgd0)=p.(0), (3.4)

then the residual force term in the Robertson equation van-
ishes. The class of initial states in the generalized canonicand spin relaxation function
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Eaﬁ(t*t,)::%1<[‘TZ*‘TB];MS(V’t)[02'0“]>§\t1)' 35 Xl(t):m—im Xl e imelt 4.2

Here( ){") and( )5 denote scalar products evaluated in the

stateSps[):(t’)] andpg, respectively. As the spectral den- the GBE can .be solved b)_/ Laplace_ transformation. Keeping
sity J(w) has a characteristic width,, the bath relaxation terms up to linear order i) one finds, after tedious but
function g(r)—which is essentially its Fourier transform— Straightforward calculations,

decays on a typical scalémemory time”) 7yeni~ Lo, . For _ 0 1

super-Ohmic damping this memory time is the only charac- pA(t)=p; (1) +p; (1), 4.3

tenistic ime scale of the bath, independent of the teMPeras here the first term describes the transient dynamics, while

ture. This distinguishes the super-Ohmic from the Ohm'ahe second term describes the steady-state dynamics. The

case where there exists a second characteristic scale of or €l nsient term is given by the standard second-order result
(KT)‘l, whereK is the Kondo parameter. for a static biag27]

Using now, in Born approximation,

©
O(t)y=ude V"2 coq egt— @)/cosp

p(t')=x(t)X(t"), (3.6
)
with +(ug—pghe V1 +pgd, (4.4
1 BN with pSi= —Ugtanh(Bey2) and cob=¢,7), and relaxation
x(t"):= ———tanh , (3.7 rates
X)) 2

- . . o () t=(272) " t=3udnUelcoth Bepl2). (4.5
and defining the instantaneous equilibrium polarization 2 ! 270 0 Beo

The steady-state term gives the linear response of the TLS to

()nry = x(t")h(t"), (3.89)  the driving field. In the asymptotic regime where all tran-
. sients have decayed, the polarization oscillates coherently
the GBE can be cast into the compact form with the driving frequencyw, ; in the linear regime there is
¢ no generation of higher harmonics. Defining the dynamical
p.(H)=[p(t)xh(t)],— fodt' g(t—t’)% E.pt,t) susceptibilityx(w, ) via the relation

piM(t)=—20[x(w)e "+ x(—w )e] (4.6

Xx )Pt —(ophnen]- (3.9
This approximate equation of motion, valid at weak dissipa—We find for resonant driving .~ = €o)

tion, is still non-Markovian, and still nonlinear ;51 Far from ug +ij T<2°>
equilibrium the nonlinearities may become significant and Xres(wL):Ztanr(:BGO/Z)Z (o T e 4.7
lead to a nonexponential relaxation of the polarization vec- - L™ =0/%2
tor. Also the_ external' driving fleld. enters .nonllnearl.y, and for low-frequency driving ¢, < e)
through the time-evolution operator in the spin relaxation
function. /4 u?

b ° 4.9

Xrel L) = X = o sR Beol?) 1T 70
IV. LINEAR RESPONSE REGIME
(12 .

To test our generalized Bloch equations we show that i"here x.=(ug/4€o)tanh(Bey/2) denotes the instantaneous
the linear response regime they yield results consistent witfésponse. _In the derivation we have made use of
earlier calculations. We assume that the dynamics take placéoX+1= (QUo/fo){l—[ﬁfoCOth(BGO/Z)]/[ZQOSH(BGO/Z)]}-
in the linear regime, i.e., that at all times the polarization beThese results are well known from the literature, see, e.g.,
close to its instantaneous equilibriupr=(a). In this regime ~ Ref-[28]-
we may evaluate botE (t,t’) and y " 1(t’) in the instanta-
neous equilibrium stat@s[ﬁ(t’)], rather than in the state
psIN(t)], thus rendering the GBE linear ;m Approximat-

V. EFFECT OF WEAK DISSIPATION
ON DYNAMICAL LOCALIZATION

ing the spin relaxation function by We return to the general case of dynamics arbitrarily far
. from equilibrium. We factor out that part of the dynamics
cog €g7) —Uugsin(eg7) 0 which is due to the driving field alone, by defining new po-
O (t,t')=| UpSiN(eor) U3+U3cogepr) O |, larization vectors
0 0 0 _
4.2) pa<t):=§ Rap(H)Pg(t), (5.9
with  m=t—t’, €0:=VAZ+AZ,  uyi=Agle, and
uq:=A/€p, and expanding the susceptibility in a Fourier se- (Tadhy:= 2 Ras(){( )n) (5.2)

ries B
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via an orthogonal rotation matrix Yet we do not assume the TLS to be unbiased or dissipation-
_ less. The fast-driving limit allows one to replace rapidly os-
cos=(t) sinF(t) O cillating terms by their time averages:
R(t):=| —sinF(t) cos(t) O, (5.3 .
0 0 1 R(t)hstat_’R(t)hstat:(AOJO(ZQ/‘UL)'O:_A)::heﬁ,
(5.11
with
—_)t’ -
t 20 Dhay—x(ORADA() =:pys, (512
F(t)::f f(s)ds= —sin(w,1). (5.4) (o) w
0 L

’

[RIOE(LIR) ]y~ [ROEGUR L],

This rotation affects only th& andy components oﬁ(t), _
but notp,(t). The thus rotated polarization vectors obey an =:E,pt—t"). (5.13
equation of motion in which the driving field no longer ap-

pears explicitly, but only indirectly vi&(t); the only field The latter average is taken at fixetHt'). With these re-
which still appears explicitly is the static part placements the GBE3.9) acquires the convolution form

. -t
Nsiar =h(0) =(20,0,~4). (5.9 Ba()=[B(t) X Figr] s~ f dt g(t—t')
0

The spin relaxation function in the GBE must be rotated, too,

and is now given by %3 Eup(t=tx OBt PR,

[ROE)IRHt)].p

(5.19
1 . ’ ’ (t")
4<[0’Z,0'ﬁ],uﬂ(0,t YU(t 1t)m(ty0)[0'z1o'a]>(>\5 6,) in particular,
where U/? denotes the spin evolution operator associated E~ _ ~
with the driving field alone, at zero static field. Since atPAD =~ Jo(2Q/ @) Aoby (1), (5.19

[ROEWIRM)]=0 VYi=xy,z (57  which predicts a slowing down of the time evolution of
o - P,(t) nearJ,=0.
t_hez component of the polarization vector satisfies the equa- "1 this time-averaged GBE there are rapidly oscillating
tion of motion correction terms which are negligible as longks: 0, but
d which may become important at the localization transition
—P,(t)=—Ag[coF (t)Py(t) +SiNF(1)Py(t)]. (5.8)  Jo=0. Indeed, numerical studies by Makarov and M&k8]
dt g indicate that atlo=0 the rapidly oscillating correction terms
0
cause additional phase relaxati@nthe system is coupled to
a heat batj) and eventually destroy the dynamical localiza-
tion. Hence the time-averaged GB& 14 can only describe

bf"‘Si.S fqr e}n earlier anaIys[iZ]hof thi unt}i.ase.d L‘h: 0), the dynamics near, but not exactly at, the localization transi-
dissipationless TLS. In Ref12] the authors find in théast- tion. Furthermore, even away from the localization transi-

driving limit (w >A,) the driven TLS to be equivalent 10 @ yjo  the time-averaged GBE misses short time transients
TLS without external fielq, but with renormalized tupneling (Gaussian or algebraic dedaarising from the bath decorre-
pararr_leteerJo(ZQ/Q,_) instead ofAo; and, accordingly, |ati0n and from the nonlinear time evolution induced by the
describe the dynamics by laser field. Our description is thus expected to be valid on
intermediate time scaleso, *,w '<t<r,, where the

{7 !} are the rates at which the various components of the

The authors conclude that in the fast-driving limit and for polarization vectoﬁ(t) relax to their stationary state.
small but nonzerdy(2Q/w,) the dynamics exhibits strong A full analytical solution of the dynamics of the polariza-
slow mode oscillationg‘low-frequency generation); while  tion vectorp(t), and hence a study of its dynamics close to
for Jo(2Q/w )=0 the componenp,(t) stops evolving at the roots of the Bessel functiody, is only possible if we
all: it remains forever “frozen” in its initial staté"dynami- invoke further approximations: namely, thehigh-
cal localization”). _ . _temperature limitT>A,,A,Q, and thehigh-frequency limit

In order to understand and later generalize this result in, >, . In the high-temperature limit we may evaluate both
our formalism we, too, invoke the fast-driving limit: we as- Z(t,t') and y (t’) in pg 0]= 315 rather than in the time-

sume that the driving frequency is much larger than bothy.andent statad X(t')1. allowing us to replace
tunneling frequency and bias, P ted ()], g P

This equation, together with the correspondifrgore
complicated equations foip,(t) andpy(t), has provided the

Pt)=cod AgJo(2Q/w)t]. (5.9

w5 Ag A, (5.10 OU=)o, x Ut —20B. (5.16
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The product of evolution operators in the rotated spin relax-

ation function(5.6) can be written as a time-ordered expo-
nential

U0 Ut 1)U t,0)

it I
_T exp[—zf AR ] - %[, (5.17)
t/

where o denotes the commutator withr. In the high-

frequency limit the integrand in the exponent oscillates rap-

idly during the interval[t’,t], which has a typical length
Tmen~ Lw>1lw . In order to perform the averagé.13
we may thus replace

t"

f dt'[R(t")hged — (t—t' )R(t")Nges ,  (5.18

which will yield just the time-evolution operator of a static
tunneling problem with new parametgs11). Defining

=A%+ A315(2Q/w,), (5.19
—AoJo(ZQ/a)L)/€, (52@
u=Ale=\1-U? (5.21)

the rotated spin relaxation function is then given by

cog eT) —Ein( er) O
E(T): usin(er) u’+u®coger) O (5.22
0 0 0

We recognize that now the dynamics has the same for
as in the linear response regirtgec. IV), with the additional
simplification Be<1. Hence, indeed, the driven system can
be mapped onto a time-independent TLS with modified pa:
rameters. The results for the time evolution @f(t) can
immediately be taken over from E¢4.4), with the sole re-
placement

Ao-’AoJo(ZQ/O)L), (523

and consequently,—u, uy—u, and e;— €. Noting that

(791 A2 [Eq. (4.5] we find that the relaxation rates

must be modified according to
(71530201 w)]? (7P (5.24

In the unbiased case\(=0) and away from the roots of

the Bessel function the system thus reaches its steady state

on the time scale’)/[Jo(20/w,)]?. Near the localization
transition Jy—0) this time scale diverges faster than the
tunneling time A ;Jo(2Q/w, )]~ 2, dissipation thus being ef-
fectively switched off. As one reads off from the linear re-
sponse solutiori4.4), this implies that there will be a slow

mode coherent oscillation near the localization transition,

and that the particle will remain trapped in one well on the
time scald AyJo(2Q/w )]~ 2. This is consistent with Dakh-
novskii’'s earlier analysis within the framework of the NIBA
[16], and with the ab initio numerical calculations of
Makarov and Makri 18].

JOCHEN RAU

P,

FIG. 1. Time evolution ofp,(t) in the symmetric case. The
parameters ar&=10A,, Ay75” =10, andA=0, for driving fields
with 2Q/w, =0 (---), 2Q/w =2 (— -), and D/ w =2.3 (—).
The localization transition occurs at w, ~2.405.

In the biased caseA(0), on the other hand, the ampli-
tude of the oscillatory term in Ed4.4),
u=[35(2Q/ w )Ag]% €2, (5.29
becomes negligible fody(2Q)/w )<A/A,y. One thus ex-
pects pure exponential decay, rather than slow mode oscilla-
tions, in the immediate vicinity ad;=0. (One way of view-
ing this phenomenon is that as the bias is switched on, the
quasienergy levels cease to cross and hence the destruction
of tunneling can no longer be cohergnthe particle will
en remain trapped in one well on the time scale
(O)/[JO(ZQ/wL)]Z Further away from the localization tran-
sition the exponential decay will be superimposed with
small-amplitude oscillations.
The evolution ofp,(t) in the two casegunbiased and
biased is illustrated in Figs. 1 and 2, respectively. We have
calculated the curves using E@L.4), with the replacement

(5.23.
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FIG. 2. Time evolution of,(t) in the biased case. The param-
eters are chosen as in Fig. 1, exceptfcr 0.75\.
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VI. SUMMARY AND FINAL REMARKS tion and assume the bath to be Markovian, i.e., they assume
that the correlation time for the boson modes is negligible

comljn Iggs;h%??neatl \gr?vir;g\rfnzgi%ﬁdd tr:]i\r;wqggflgzzliz ;fi‘ovr;/eagcompared to the characteristic time scale of the double-well
P y : dynamics. For Ohmic friction this assumption is justified if

tivated by _the_breakdown Of. the '\.“BA at nonzero b!as andin addition to the classical time scale,.,~ 1/w. also the
weak dissipation we have investigated the dynamics of a . le of the bathkkT)~* with K bei h
biased two-level tunneling system strongly driven by an ex_quantum time scale of the batlK) -, with K being the
: gsy gy n by Kondo parameter, is shorter than the tunneling time. But in
ternal field and weakly coupled to a super-thIC heat bat his case the dynamics is incoherent and a weak-coupling
We.have employed the _Robertson prOJec_:Uon operator forbicture inappropriate. In fact, it has been shown explicitly
malism to derive generalized Bloch equations for the polar; o . .
o - that the Born approximation fails for a tunneling system sub-
ization vectorp(t). . _ ject to Ohmic dissipatiorand driving, and that driving ren-
Assuming only the validity of the two-state picture and of gers the dynamics intrinsically non-Markovi@b3]. This is
the Born approximation, and invoking the fast-driving, high- not surprising since even for super-Ohmic dissipation, where
frequency, and high-temperature limits, we have shown thag,e second(quantum time scale does not exist, non-

on intermediate time scales the driven dissipative TLS can bgjarkovian effects are essential for the determination of the
mapped onto a dissipative TLS without driving, but with - rect relaxation ratef9].

renormalized parameters. We have found that since the phase Very recently Grifoniet al.[14] have extended their pre-

relaxation rate decreases quadratically with(2Q/w.),  vious treatmenf13] beyond the NIBA. They derive an exact
while Fhe tunneling frequency de_cre_ases o_nly linearly, CQhermaster equation, which they then use to determine the dy-
ence is restored near the localization point of an unbiasefgmics at weak coupling and fast driving. Indeed, our GBE
TLS (A=0). This manifests itself in slow mode coherent fings a counterpart in the set of equations adjacent to their
oscillations near the localization transition, a result that DaEq_ (10). Yet instead of discussing the influence of weak
khnovskii had previously obtained within the framework of gissipation on the dynamics near the localization transition,
the NIBA. In the biased caseA(*0) we found a qualita- they use their master equation as a starting point to investi-
tively different behavior, namely, pure exponential decay iNgate the modification of quantum cohereraseay from the

the immediate vicinity 00(2}/w,)=0. _ roots of the Bessel functions, in the regifiéw, <1.
Let us finally comment on two other papers which address
the problem of driven tunneling dynamics in the weak- ACKNOWLEDGMENTS

dissipation limit[14,15. Dittrich, Oelschiger, and Haggi

[15] consider dynamical localization in the weak-coupling We wish to thank R. J. Silbey, M. Cho, and M. Grifoni for
limit (Born approximatiojpand solve numerically the quan- helpful discussions. Financial support by NSF and the Alex-
tum master equation for the full continuous bistable systemander von Humboldt Foundatiofi".N), as well as by the
with Ohmic dissipation. In contrast to our present analysisEuropean Union HCM Programm@.R), is gratefully ac-
however, they employ a restricted rotating-wave approximaknowledged.
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