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Generalized Bloch equations for a strongly driven tunneling system

Peter Neu1 and Jochen Rau2,*
1Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

2European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT* ), Villa Tambosi, Strada delle Tabarelle 286,
38050 Villazzano, Trento, Italy

~Received 20 May 1996!

Using theRobertson projection operator formalism, we derive generalized Bloch equations which describe
the dynamics of a biased two-level tunneling system strongly driven by an external field and weakly coupled
to a super-Ohmic heat bath. The generalized Bloch equations constitute a set of coupled nonlinear integro-
differential equations. With their help we investigate the influence of phonons on the phenomenon of dynami-
cal localization.@S1063-651X~97!05002-2#
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I. INTRODUCTION

The last decade has witnessed detailed investigation
the problem of macroscopic quantum coherence@1,2#. The
generic model is a two-level tunneling system~TLS! coupled
to a harmonic heat bath and an external driving field. T
tunneling units may represent, e.g., small groups of atom
molecules in structurally disordered solids, such as in
study of low-temperature properties of glasses@3#; electrons
in semiconductor quantum wells@4# or in the electron-
transfer dynamics in chemical reactions@5#; or magnetic flux
quanta at Josephson junctions or superconducting quan
interference devices~SQUIDs! @6#. The basic mechanism b
which quantum coherence is destroyed is the coupling of
quantum system to the dissipative environment. Various
proaches using second-order perturbation theory, variati
polaron theory@7#, mode-coupling theories@8# or, most
popular, the noninteracting-blip approximation~NIBA ! @1,2#
have been used to discuss the decoherence effect of the

One key issue is whether by careful tuning of the drivi
field the effect of dissipation may be reduced and quan
coherence be restored on the macroscopic level. This ide
controlling tunneling and relaxation has become especi
popular since the discovery, by Grossmann, Ha¨nggi, and co-
workers@9#, of the effect ofcoherent destruction of tunne
ing. In a numerical treatment of an isolated bistable qua
potential driven by a periodic force—but not coupled to
heat bath—they found complete suppression of tunneling
certain ratios of the field amplitude and the driving frequen
the two lowest Floquet eigenstates~quasienergies! of the
driven system become degenerate, thereby preventing
system from performing coherent oscillations between
left and right well. As a result, a particle initially localized i
one well will remain there forever. This so-calleddynamical
localization effect has also been described in a two-st
model @10–12#, and has since been the subject of seve
further investigations@13–22#.

Recent studies have focused on the question of to w
extent the dynamical localization of a TLS will be affecte

*Present address: Max-Planck-Institut fu¨r Physik komplexer Sys-
teme, Bayreuther Strabe 40, Haus 16, 01187 Dresden, Germany
551063-651X/97/55~3!/2195~8!/$10.00
of

e
or
e

um

e
p-
al

ath.

m
of
ly

c

at
y

he
e

e
l

at

by the coupling to a heat bath. Physical intuition seems
suggest that in order for dynamical localization to occur
wave packet initially localized in one well must have a we
defined phase; only then can one expect that a mism
between the tunneling motion and the driving field may p
vent a particle from escaping into the other well. Sin
phonons destroy this phase coherence—i.e., there is a fi
phase memory timet2—dynamical localization should al
ways be softened through the coupling to a heat bath.

Recently Grifoniet al. @13# gave a systematic approach
the transient and steady-state dynamics of a driven diss
tive TLS. They considered Ohmic and frequency-depend
damping in the framework of the NIBA for the stochast
force, but without any approximation for the driving force.
Ref. @14# they extended their approach beyond the NIB
Dittrich et al. @15# investigated numerically the effect o
driving and dissipation on the coherent tunneling motion o
symmetric bistable system for weak Ohmic damping. Da
novskii @16,17# employed small-polaron theory to addre
the same issue in a two-state approximation within
NIBA. He concluded for the case of a symmetric TLS wi
super-Ohmic damping that, in contrast to intuition, the loc
ization transition remains stable against disturbance by
bath as long as the driving frequency is larger than the
laxation energy~polaron-binding energy! of the lattice. On
these grounds he predicted the existence of a slow m
oscillation near the transition@16#. His conclusions essen
tially rely on the fact that near the localization transition t
rate of phase loss—which is due to the bath—decrea
faster than the tunneling coherence.

So far most investigations have made use of the NIB
Yet the NIBA breaks down at nonzero bias, weak dissip
tion, and low temperatures. It is the latter regime, so
poorly understood, which we shall discuss in this pap
Weak TLS-phonon coupling is the limit which is releva
for, e.g., the description of tunneling centers in dielect
solids. We will work within the two-state picture and assum
a super-Ohmic spectral density for the phonons; and we
treat the TLS-phonon coupling in Born approximation@23#.
~There are in fact general arguments why under the ab
assumptions it should always be justified to treat the diss
tion perturbatively@1#.! The external field, on the other han
will be treated to any order. We are then able to derive n
2195 © 1997 The American Physical Society



s
o
he
n
an
e

a
to
e
S
io

e
o
r

te

um
e

rt-
ion

ry
the

ra-
nt
e

pic-

x-
cast

2196 55PETER NEU AND JOCHEN RAU
linear and non-Markoviangeneralized Bloch equation
~GBE!. These in turn permit us to discuss the influence
weak dissipation on the localization transition for both t
symmetric and the biased case, and for arbitrarily stro
driving and any temperature. In the high-temperature
high-frequency limit there are analytical solutions, which w
will compare with those obtained from the NIBA.

The paper is organized as follows. In Sec. II we give
short introduction to the Robertson formalism and apply it
driven TLS dynamics. In Sec. III we derive the GBE. Th
linear response regime is discussed as a special case in
IV. In Sec. V we address the influence of weak dissipat
on the dynamical localization transition, before we close~in
Sec. VI! with a brief summary.

II. ROBERTSON FORMALISM

We will derive a non-Markovian generalization of th
Bloch equations with the help of the so-called Roberts
formalism @24#. The Robertson formalism constitutes a pa
ticular variant of the well-known projection technique@25#,
one that is tailored to describing the evolution of selec
observables even far from equilibrium.

When studying the dynamics of a macroscopic quant
system, one is typically confronted with the problem of d
termining the evolution of only a small set of selected~‘‘rel-
evant’’! observables $Ga%. Let the ~generally time-
dependent! Hamiltonian be denoted byH(t). Then the
equation of motion for the expectation values

ga~ t ![^Ga&r~ t ! :5tr@r~ t !Ga# ~2.1!

reads

ġa~ t !5 i ^L~ t !Ga&r~ t ! , ~2.2!

with r(t) being the statistical operator andL(t) the Liouvil-
lian

L~ t !:5\21@H~ t !,* #. ~2.3!

Associated with the expectation values$ga(t)% is, at each
time t, a generalized canonical state
a
pli
ta
lu
th

th

no
ta
f

g
d

ec.
n

n
-

d

-

r rel~ t !:5Z~ t !21expS 2(
a

l a~ t !GaD , ~2.4!

called therelevant part of the statistical operator, with par-
tition function

Z~ t !:5tr expS 2(
a

l a~ t !GaD ~2.5!

and the Lagrange parameters$ l a(t)% adjusted such as to
yield the correct expectation values~2.1! of the relevant ob-
servables. The difference

r irr~ t !:5r~ t !2r rel~ t ! ~2.6!

is then theirrelevant partof the state.
Like all variants of the projection technique, the Robe

son formalism is based on a clever insertion of project
operators into the equation of motion~2.2!. Here the projec-
tion operatorP(t) is chosen such that it projects arbitra
vectors in Liouville space onto the subspace spanned by
unit operator and by the relevant observables$Ga%, and that
this projection is orthogonal with respect to the~time-
dependent! scalar product

^A;B&~ t !:5E
0

1

dm tr@r rel~ t !
mA†r rel~ t !

12mB#. ~2.7!

Since this scalar product varies in time, the projection ope
tor, too, is time dependent; so is its compleme
Q(t):512P(t). The projection operator is known as th
Kawasaki-Gunton projector@26#.

Let T(t8,t) be the evolution operator defined by

]

]t8
T~ t8,t !52 i Q~ t8!L~ t8!Q~ t8!T~ t8,t !, ~2.8!

with initial conditionT(t,t)51. AsQ projects out the irrel-
evant component of an observable, this operator may be
tured as describing the evolution of theirrelevantdegrees of
freedom of the system. The equation of motion for the e
pectation values of the relevant observables can then be
into the form
ġa~ t !5 i ^L~ t !Ga& rel~ t !1E
0

t

dt8(
c

^Q~ t8!L~ t8!Gc ;T~ t8,t !Q~ t !L~ t !Ga&
~ t8!l c~ t8!1 i ^T~0,t !Q~ t !L~ t !Ga& irr~0! , ~2.9!
in
les
but
s of
be
ro-
n
vior

en
is
which is known as theRobertson equation@24#. Here ^ & rel
and^ & irr denote expectation values evaluated in the relev
and irrelevant part of the state, respectively. A major sim
fication occurs if, as is often the case, the initial macros
can be characterized completely by the expectation va
$^Ga&(0)% of the relevant observables and hence has
generalized canonical form~2.4!. In this case the initial state
has no irrelevant component, which in turn implies that
third ~‘‘residual force’’! term vanishes.

The Robertson equation embodies a closed system of
linear coupled integro-differential equations for the expec
nt
-
te
es
e

e

n-
-

tion values$ga(t)%. These coupled equations are nonlocal
time: future expectation values of the relevant observab
are predicted not just on the basis of their present values,
on their entire history. In essence, the irrelevant degree
freedom have been eliminated, but this elimination must
paid for by nonlinear and non-Markovian features of the p
jected equation of motion; the complexity of the evolutio
has been mapped onto nonlinearities and a nonlocal beha
in time.

We now determine the Robertson equation for a driv
TLS. The underlying microscopic dynamics of the TLS
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55 2197GENERALIZED BLOCH EQUATIONS FOR A STRONGLY . . .
determined by a time-dependent Hamiltonian

H~ t !5HS~ t !1HSB1HB . ~2.10!

Here the system Hamiltonian is given by

HS~ t !52 1
2sW •hW ~ t !, ~2.11!

wherehW (t)5\„D0,0,2D2 f (t)… includes the tunneling fre
quencyD0, the biasD, and the time-dependent driving fiel

f ~ t !52Vcos~vLt !, ~2.12!

with Rabi frequencyV and driving frequencyvL . If we
denote the state of a particle localized in the left~right! well
by uL& (uR&) then the Pauli matrixsz5uL&^Lu2uR&^Ru rep-
resents its coordinate, whilesx5uL&^Ru1uR&^Lu represents
its tunneling motion. With this conventionD.0 means that
the left well has a higher potential energy than the right w
The bath HamiltonianHB5(k\vkbk

†bk , with bosonic cre-
ation and annihilation operators satisfying@bi ,bj

†#5d i j , de-
scribes the dynamics of an ensemble of harmonic oscilla
~phonons!. Their spectral density is taken to be super-Ohm

J~v!5
2

\2(
j
cj
2d~v2v j !5Uv3exp~2v/vc!, v>0

~2.13!

up to some cutoffvc . Finally, the system-bath coupling i
assumed to be bilinear in the tunneling and the phonon
ordinate,

HSB5sz(
j
cj~bj1bj

†!5:sze. ~2.14!

Relevant observables are

$Ga%→$sa ,~HSB1HB!%, ~2.15!

with expectation values

$ga~ t !%→$pa~ t !,EB~ t !% ~2.16!

and associated Lagrange parameters

$ l a~ t !%→$2bla~ t !/2,b%. ~2.17!

Here pa(t) denotes the time-dependent polarization of
TLS, andEB(t) the internal energy of the bath. We assum
the heat bath to be large enough so that its inverse temp
tureb51/kBT does not vary in time. The relevant part of th
statistical operator reads

r rel~ t !5Z21exp$2b@HB1HSB2
1
2lW ~ t !•sW #%

5Z21exp„2b$H~ t !1 1
2 @hW ~ t !2lW ~ t !#•sW %….

~2.18!

Provided the~full ! initial stater(0) can be written in this
generalized canonical form, i.e., providedr(0)5r rel(0),
then the residual force term in the Robertson equation v
ishes. The class of initial states in the generalized canon
l.

rs
,

o-

e

ra-

n-
al

form includes the common case of a particle initially held
the site uL&, pz(0)51, and coupled to a bath in therma
equilibrium,

r~0!}pLexp$2b@H~0!1 1
2\D0sx#%pL . ~2.19!

Here,pL5 1
2(11sz) denotes the projector on the stateuL&.

This initial condition has the generalized canonical fo
~2.4! with Lagrange parameterslW (0)5(0,0,̀ ). Clearly, the
fact that the initial state has the generalized canonical fo
does not imply that the total system is in equilibrium; rath
it means that the initial state can be completely character
by the expectation values$pa(0),EB(0)% of the relevant ob-
servables. The Robertson equation then translates into
generalized Bloch equations

ṗa~ t !5\21$pW ~ t !3@hW ~ t !2lW ~ t !#%a2E
0

t

dt8(
b

Kab~ t,t8!

3@lb~ t8!2hb~ t8!#, ~2.20!

with memory kernel

Kab~ t,t8!:5
b

2
^Q~ t8!LSBsb ;T~ t8,t !Q~ t !LSBsa&~ t8!.

~2.21!

The GBE are non-Markovian: our formalism allows for th
inclusion of arbitrarily large memory effects. Indeed, su
non-Markovian effects will prove essential for the determ
nation of the correct relaxation rates.

III. DRIVEN DYNAMICS AT WEAK DISSIPATION

For simplicity, we will from now on set\5kB51. In
order to evaluate the memory kernel we assume weak c
pling between the TLS and the bath, and hence do low
~i.e., second-! order perturbation theory inHSB ~Born ap-
proximation!. To this order we can omit the compleme
projectorsQ, replace the evolution operatorT with

T~ t8,t ! → US~ t8,t ! ^UB~ t8,t !, ~3.1!

whereT, US , UB are the evolution operators associated w
QLQ, LS , and LB , respectively, and evaluate the sca
product~2.7! in the state

r rel
~0!~ t !5rB^ rS@lW ~ t !#:

5
1

ZB
exp~2bHB! ^

1

ZS
exp@ 1

2blW ~ t !•sW # ~3.2!

rather than inr rel(t). We thus obtain

Kab~ t,t8!5g~ t2t8!Jab~ t,t8!, ~3.3!

with the bath relaxation function

g~ t2t8!:52b^e;UB~ t8,t !e&B52E
0

`

dv
J~v!

v
cos@v~ t2t8!#

~3.4!

and spin relaxation function
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2198 55PETER NEU AND JOCHEN RAU
Jab~ t,t8!:5 1
4 ^@sz ,sb#;US~ t8,t !@sz ,sa#&l

~ t8! . ~3.5!

Here^ &l
(t8) and^ &B denote scalar products evaluated in t

statesrS@lW (t8)# and rB , respectively. As the spectral den
sity J(v) has a characteristic widthvc , the bath relaxation
function g(t)—which is essentially its Fourier transform—
decays on a typical scale~‘‘memory time’’! tmem;1/vc . For
super-Ohmic damping this memory time is the only char
teristic time scale of the bath, independent of the tempe
ture. This distinguishes the super-Ohmic from the Ohm
case where there exists a second characteristic scale of
(KT)21, whereK is the Kondo parameter.

Using now, in Born approximation,

pW ~ t8!5x~ t8!lW ~ t8!, ~3.6!

with

x~ t8!:5
1

ulW ~ t8!u
tanh

bulW ~ t8!u
2

, ~3.7!

and defining the instantaneous equilibrium polarization

^sW &h~ t8! :5x~ t8!hW ~ t8!, ~3.8!

the GBE can be cast into the compact form

ṗa~ t !5@pW ~ t !3hW ~ t !#a2E
0

t

dt8 g~ t2t8!(
b

Jab~ t,t8!

3x21~ t8!@pb~ t8!2^sb&h~ t8!#. ~3.9!

This approximate equation of motion, valid at weak dissip
tion, is still non-Markovian, and still nonlinear inpW . Far from
equilibrium the nonlinearities may become significant a
lead to a nonexponential relaxation of the polarization v
tor. Also the external driving field enters nonlinearl
through the time-evolution operator in the spin relaxat
function.

IV. LINEAR RESPONSE REGIME

To test our generalized Bloch equations we show tha
the linear response regime they yield results consistent
earlier calculations. We assume that the dynamics take p
in the linear regime, i.e., that at all times the polarization
close to its instantaneous equilibrium,pW '^sW &. In this regime
we may evaluate bothJ(t,t8) andx21(t8) in the instanta-
neous equilibrium staterS@hW (t8)#, rather than in the state
rS@lW (t8)#, thus rendering the GBE linear inpW . Approximat-
ing the spin relaxation function by

J~0!~ t,t8!5S cos~e0t! 2ū0sin~e0t! 0

ū0sin~e0t! u0
21ū0

2cos~e0t! 0

0 0 0
D ,

~4.1!

with t:5t2t8, e0 :5AD21D0
2, u0 :5D0 /e0, and

ū0 :5D/e0, and expanding the susceptibility in a Fourier s
ries
-
a-
c
der

-

d
-

n
th
ce
e

-

x21~ t !5 (
m52`

`

xm
21 e2 imvLt, ~4.2!

the GBE can be solved by Laplace transformation. Keep
terms up to linear order inV one finds, after tedious bu
straightforward calculations,

pz~ t !5pz
~0!~ t !1pz

~1!~ t !, ~4.3!

where the first term describes the transient dynamics, w
the second term describes the steady-state dynamics.
transient term is given by the standard second-order re
for a static bias@27#,

pz
~0!~ t !5u0

2e2t/t2
~0!
cos~e0t2w!/cosw

1~ ū0
22pz

eq!e2t/t1
~0!

1pz
eq, ~4.4!

with pz
eq52ū0tanh(be0/2) and cotw5e0t2

(0) , and relaxation
rates

~t2
~0!!215~2t1

~0!!215 1
2u0

2pUe0
3coth~be0/2!. ~4.5!

The steady-state term gives the linear response of the TL
the driving field. In the asymptotic regime where all tra
sients have decayed, the polarization oscillates cohere
with the driving frequencyvL ; in the linear regime there is
no generation of higher harmonics. Defining the dynami
susceptibilityx(vL) via the relation

pz
~1!~ t !522V@x~vL!e2 ivLt1x~2vL!eivLt# ~4.6!

we find for resonant driving (vL'6e0)

x res~vL!5
u0
2

4
tanh~be0/2!(

6

6 i t2
~0!

12 i ~vL7e0!t2
~0! ~4.7!

and for low-frequency driving (vL!e0)

x rel~vL!2x`5
b/4

cosh2~be0/2!

ū0
2

12 ivLt1
~0! , ~4.8!

where x`5(u0
2/4e0)tanh(be0/2) denotes the instantaneou

response. In the derivation we have made use
x0x61

215(Vū0 /e0)$12@be0coth(be0/2)#/@2cosh
2(be0/2)#%.

These results are well known from the literature, see, e
Ref. @28#.

V. EFFECT OF WEAK DISSIPATION
ON DYNAMICAL LOCALIZATION

We return to the general case of dynamics arbitrarily
from equilibrium. We factor out that part of the dynamic
which is due to the driving field alone, by defining new p
larization vectors

p̃a~ t !:5(
b

Rab~ t !pb~ t !, ~5.1!

^s̃a&h~ t ! :5(
b

Rab~ t !^sb&h~ t ! ~5.2!
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55 2199GENERALIZED BLOCH EQUATIONS FOR A STRONGLY . . .
via an orthogonal rotation matrix

R~ t !:5S cosF~ t ! sinF~ t ! 0

2sinF~ t ! cosF~ t ! 0

0 0 1
D , ~5.3!

with

F~ t !:5E
0

t

f ~s!ds5
2V

vL
sin~vLt !. ~5.4!

This rotation affects only thex and y components ofpW (t),
but notpz(t). The thus rotated polarization vectors obey
equation of motion in which the driving field no longer a
pears explicitly, but only indirectly viaR(t); the only field
which still appears explicitly is the static part

hW stat:5hW ~ t !
t

5~D0,0,2D!. ~5.5!

The spin relaxation function in the GBE must be rotated, t
and is now given by

@R~ t !J~ t,t8!R21~ t8!#ab

5 1
4 ^@sz ,sb#;UV~0,t8!US~ t8,t !UV~ t,0!@sz ,sa#&l

~ t8! ,
~5.6!

where UV denotes the spin evolution operator associa
with the driving field alone, at zero static field. Since

@R~ t !J~ t,t8!R21~ t8!#zi50 ; i5x,y,z, ~5.7!

thez component of the polarization vector satisfies the eq
tion of motion

d

dt
p̃z~ t !52D0@cosF~ t ! p̃y~ t !1sinF~ t ! p̃x~ t !#. ~5.8!

This equation, together with the corresponding~more
complicated! equations forp̃x(t) andp̃y(t), has provided the
basis for an earlier analysis@12# of the unbiased (D50),
dissipationless TLS. In Ref.@12# the authors find in thefast-
driving limit (vL@D0) the driven TLS to be equivalent to
TLS without external field, but with renormalized tunnelin
parameterD0J0(2V/vL) instead ofD0; and, accordingly,
describe the dynamics by

p̃z~ t !5cos@D0J0~2V/vL!t#. ~5.9!

The authors conclude that in the fast-driving limit and f
small but nonzeroJ0(2V/vL) the dynamics exhibits stron
slow mode oscillations~‘‘low-frequency generation’’!; while
for J0(2V/vL)50 the componentp̃z(t) stops evolving at
all: it remains forever ‘‘frozen’’ in its initial state~‘‘dynami-
cal localization’’!.

In order to understand and later generalize this resul
our formalism we, too, invoke the fast-driving limit: we a
sume that the driving frequency is much larger than b
tunneling frequency and bias,

vL@D0 ,D. ~5.10!
,

d

-

in

h

Yet we do not assume the TLS to be unbiased or dissipat
less. The fast-driving limit allows one to replace rapidly o
cillating terms by their time averages:

R~ t !hW stat→R~ t !hW stat
t

5„D0J0~2V/vL!,0,2D…5:hW eff ,
~5.11!

^s̃W &h~ t8!→x~ t8!R~ t8!hW ~ t8!
t8

5:pW as, ~5.12!

@R~ t !J~ t,t8!R21~ t8!#ab→@R~ t !J~ t,t8!R21~ t8!#ab

t8

5:J̃ab~ t2t8!. ~5.13!

The latter average is taken at fixed (t2t8). With these re-
placements the GBE~3.9! acquires the convolution form

p8 a~ t !5@ p̃W~ t !3hW eff#a2E
0

t

dt8 g~ t2t8!

3(
b

J̃ab~ t2t8!x21~ t8!@ p̃b~ t8!2pb
as#,

~5.14!

in particular,

d

dt
p̃z~ t !52J0~2V/vL!D0p̃y~ t !, ~5.15!

which predicts a slowing down of the time evolution
p̃z(t) nearJ050.
To this time-averaged GBE there are rapidly oscillati

correction terms which are negligible as long asJ0Þ0, but
which may become important at the localization transiti
J050. Indeed, numerical studies by Makarov and Makri@18#
indicate that atJ050 the rapidly oscillating correction term
cause additional phase relaxation~if the system is coupled to
a heat bath!, and eventually destroy the dynamical localiz
tion. Hence the time-averaged GBE~5.14! can only describe
the dynamics near, but not exactly at, the localization tran
tion. Furthermore, even away from the localization tran
tion, the time-averaged GBE misses short time transie
~Gaussian or algebraic decay! arising from the bath decorre
lation and from the nonlinear time evolution induced by t
laser field. Our description is thus expected to be valid
intermediate time scalesvc

21 ,vL
21!t!ta , where the

$ta
21% are the rates at which the various components of

polarization vectorp̃W (t) relax to their stationary state.
A full analytical solution of the dynamics of the polariza

tion vectorp̃W (t), and hence a study of its dynamics close
the roots of the Bessel functionJ0, is only possible if we
invoke further approximations: namely, thehigh-
temperature limit, T@D0 ,D,V, and thehigh-frequency limit,
vL@vc . In the high-temperature limit we may evaluate bo
J(t,t8) andx21(t8) in rS@0#5 1

21S rather than in the time-
dependent staterS@lW (t8)#, allowing us to replace

^ &l
~ t8!→^ &0 , x21~ t8!→2/b. ~5.16!
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The product of evolution operators in the rotated spin rel
ation function~5.6! can be written as a time-ordered exp
nential

UV~0,t8!US~ t8,t !UV~ t,0!

5T expF2
i

2Et8
t

dt9@R~ t9!hW stat#•sW
3G , ~5.17!

where s3 denotes the commutator withs. In the high-
frequency limit the integrand in the exponent oscillates r
idly during the interval@ t8,t#, which has a typical length
tmem;1/vc@1/vL . In order to perform the average~5.13!
we may thus replace

E
t8

t

dt9@R~ t9!hW stat#→~ t2t8!R~ t9!hW stat
t9
, ~5.18!

which will yield just the time-evolution operator of a stat
tunneling problem with new parameters~5.11!. Defining

e:5AD21D0
2J0

2~2V/vL!, ~5.19!

u:5D0J0~2V/vL!/e, ~5.20!

ū:5D/e5A12u2, ~5.21!

the rotated spin relaxation function is then given by

J̃~t!5S cos~et! 2ūsin~et! 0

ūsin~et! u21ū2cos~et! 0

0 0 0
D . ~5.22!

We recognize that now the dynamics has the same f
as in the linear response regime~Sec. IV!, with the additional
simplificationbe!1. Hence, indeed, the driven system c
be mapped onto a time-independent TLS with modified
rameters. The results for the time evolution ofp̃z(t) can
immediately be taken over from Eq.~4.4!, with the sole re-
placement

D0→D0J0~2V/vL!, ~5.23!

and consequently,u0→u, ū0→ū, and e0→e. Noting that
(ta

(0))21}D0
2 @Eq. ~4.5!# we find that the relaxation rate

must be modified according to

~ta
~0!!21→@J0~2V/vL!#2 ~ta

~0!!21. ~5.24!

In the unbiased case (D50) and away from the roots o
the Bessel function the system thus reaches its steady
on the time scalet2

(0)/@J0(2V/vL)#
2. Near the localization

transition (J0→0) this time scale diverges faster than t
tunneling time@D0J0(2V/vL)#

21, dissipation thus being ef
fectively switched off. As one reads off from the linear r
sponse solution~4.4!, this implies that there will be a slow
mode coherent oscillation near the localization transiti
and that the particle will remain trapped in one well on t
time scale@D0J0(2V/vL)#

21. This is consistent with Dakh
novskii’s earlier analysis within the framework of the NIB
@16#, and with the ab initio numerical calculations o
Makarov and Makri@18#.
-

-

m

-

ate

,

In the biased case (DÞ0), on the other hand, the ampl
tude of the oscillatory term in Eq.~4.4!,

u25@J0~2V/vL!D0#
2/e2, ~5.25!

becomes negligible forJ0(2V/vL)!D/D0. One thus ex-
pects pure exponential decay, rather than slow mode osc
tions, in the immediate vicinity ofJ050. ~One way of view-
ing this phenomenon is that as the bias is switched on,
quasienergy levels cease to cross and hence the destru
of tunneling can no longer be coherent.! The particle will
then remain trapped in one well on the time sca
t1
(0)/@J0(2V/vL)#

2. Further away from the localization tran
sition the exponential decay will be superimposed w
small-amplitude oscillations.

The evolution of p̃z(t) in the two cases~unbiased and
biased! is illustrated in Figs. 1 and 2, respectively. We ha
calculated the curves using Eq.~4.4!, with the replacement
~5.23!.

FIG. 1. Time evolution ofp̃z(t) in the symmetric case. The
parameters areT510D0, D0t2

(0)510, andD50, for driving fields
with 2V/vL50 ~–•–!, 2V/vL52 ~– –!, and 2V/vL52.3 ~—!.
The localization transition occurs at 2V/vL'2.405.

FIG. 2. Time evolution ofp̃z(t) in the biased case. The param
eters are chosen as in Fig. 1, except forD50.75D0.



kl
o
n
f
ex
at
fo
la

of
h-
th
b

th
ha

e
se
nt
a
of

in

es
k

ng
-
em
sis
a

ume
ble
ell
if

t in
ling
tly
b-

ere
-
the

-
t
dy-
BE
heir
ak
on,
sti-

r
ex-

55 2201GENERALIZED BLOCH EQUATIONS FOR A STRONGLY . . .
VI. SUMMARY AND FINAL REMARKS

In this paper we have studied the influence of a wea
coupled thermal environment on dynamical localization. M
tivated by the breakdown of the NIBA at nonzero bias a
weak dissipation we have investigated the dynamics o
biased two-level tunneling system strongly driven by an
ternal field and weakly coupled to a super-Ohmic heat b
We have employed the Robertson projection operator
malism to derive generalized Bloch equations for the po
ization vectorpW (t).

Assuming only the validity of the two-state picture and
the Born approximation, and invoking the fast-driving, hig
frequency, and high-temperature limits, we have shown
on intermediate time scales the driven dissipative TLS can
mapped onto a dissipative TLS without driving, but wi
renormalized parameters. We have found that since the p
relaxation rate decreases quadratically withJ0(2V/vL),
while the tunneling frequency decreases only linearly, coh
ence is restored near the localization point of an unbia
TLS (D50). This manifests itself in slow mode cohere
oscillations near the localization transition, a result that D
khnovskii had previously obtained within the framework
the NIBA. In the biased case (DÞ0) we found a qualita-
tively different behavior, namely, pure exponential decay
the immediate vicinity ofJ0(2V/vL)50.

Let us finally comment on two other papers which addr
the problem of driven tunneling dynamics in the wea
dissipation limit @14,15#. Dittrich, Oelschla¨ger, and Ha¨nggi
@15# consider dynamical localization in the weak-coupli
limit ~Born approximation! and solve numerically the quan
tum master equation for the full continuous bistable syst
with Ohmic dissipation. In contrast to our present analy
however, they employ a restricted rotating-wave approxim
er

p-
l.

u-

c-
B:
y
-
d
a
-
h.
r-
r-

at
e

se

r-
d

-

s
-

,
-

tion and assume the bath to be Markovian, i.e., they ass
that the correlation time for the boson modes is negligi
compared to the characteristic time scale of the double-w
dynamics. For Ohmic friction this assumption is justified
in addition to the classical time scaletmem;1/vc also the
quantum time scale of the bath (KT)21, with K being the
Kondo parameter, is shorter than the tunneling time. Bu
this case the dynamics is incoherent and a weak-coup
picture inappropriate. In fact, it has been shown explici
that the Born approximation fails for a tunneling system su
ject to Ohmic dissipationand driving, and that driving ren-
ders the dynamics intrinsically non-Markovian@13#. This is
not surprising since even for super-Ohmic dissipation, wh
the second~quantum! time scale does not exist, non
Markovian effects are essential for the determination of
correct relaxation rates@29#.

Very recently Grifoniet al. @14# have extended their pre
vious treatment@13# beyond the NIBA. They derive an exac
master equation, which they then use to determine the
namics at weak coupling and fast driving. Indeed, our G
finds a counterpart in the set of equations adjacent to t
Eq. ~10!. Yet instead of discussing the influence of we
dissipation on the dynamics near the localization transiti
they use their master equation as a starting point to inve
gate the modification of quantum coherenceaway from the
roots of the Bessel functions, in the regimeV/vL!1.
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